Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 175
  • Home
  • Print this page
  • Email this page
Year : 2017  |  Volume : 14  |  Issue : 2  |  Page : 74-80

Development of pelvis phantom for verification of treatment planning system using convolution, fast superposition, and superposition algorithms

1 Department of Radiation Biology, Radiotherapy, Radiodiagnosis and Radiography, College of Medicine, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
2 Department of Radiology, Medical Physics Unit, University College Hospital, Ibadan, Nigeria
3 Department of Radiology, Medical Physics Unit, Federal Medical Center, Asaba, Nigeria

Correspondence Address:
Chibuzo Bede Madu
Department of Radiology, Medical Physics Unit, University College Hospital, Ibadan
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jcls.jcls_78_16

Rights and Permissions

Background: The cost of commercial pelvis phantom is a burden to the quality assurance in radiotherapy of small and/or low-income radiotherapy centers. That an algorithm is accurate with short treatment time is a prized asset in treatment planning. Objectives: The purpose of this study was to develop a hybrid algorithm that has balance between accuracy and treatment time and design a pelvis phantom for evaluating the accuracy of a linear accelerator monitor unit. Materials and Methods: A pelvis phantom was designed using Plaster of Paris, styrofoam and water with six hollows for inserting materials mimicking different biological tissues, and the ionization chamber. Computed tomography images of the phantom were transferred to the CMS XiO treatment planning system with three different algorithms. Monitor units were obtained with clinical linear accelerator with isocentric setup. The phantom was tested using convolution (C), fast superposition (FSS), and superposition (S) algorithms with respect to an established reference dose of 1 Gy from a large water phantom. Data analysis value was done using GraphPad Prism 5.0. Results: FSS algorithm showed better accuracy than C and S with bone, lung, and solid water inhomogeneous insert. C algorithm was better in terms of treatment time than S. There was no statistically significant difference between the mean doses for all the three algorithms against the reference dose. The maximum percentage deviation was ±4%, which was below ±5% International Commission on Radiation Units and Measurement minimal limit. Conclusion: This algorithm can be employed in the calculation of dose in advance techniques such as intensity-modulated radiation therapy and RapidArc by radiotherapy centers with multiple algorithm system because it is easy to implement. The materials used for the construction of the phantom are very affordable and simple for low-budget radiotherapy centers.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded68    
    Comments [Add]    

Recommend this journal